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This article describes an analysis of the general problem of the penetra-
tion of a solid cone into a coaxial conical region which encloses ideal
incompressible weightless fluid. The cone velocity is a power function of
time. Both plane and axially symmetrical cases are reviewed.

Cone penetration at constant velocity is a special case of this
problem [1-5 1. This problem also embraces that of a transient model of
the cumulative explosion of a missile in a conical envelope.

An approximate methpd of calculating the resistance and the velocity
profile along the free surface is proposed (in particular, calculation of
the velocity of the spray or the height of the accumulated wave). The
method is applicable to any geometry.

1. Basis of Problem. 1. We begin by discussing the penetration of
ideal weightless fluid by a wedge. At the start (¢t = 0), the fluid is at
rest and occupies a solid angle of coaxial with the wedge (Fig.1). It is
assumed that the wedge and the region r occupied by the fluid share a
vertical axis of symmetry. The penetration velocity of the wedge is
vertically downwards and is considered to be known. It is a power function
of time, represented by

V= —ciry®
The fluid begins to move as a result of the pressure of the wedge. Be-

cause there are no mass forces, this motion will have a potential ¢(x, y, t)
which should satisfy the following boundary value problem (see Fig. 2 for

notation);
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The normal here is assumed to be the inner one with respect to the
fluid, S is the free surface y = {(x, t). This is unknown at the outset
and is determined from the kinematic condition

d _ (% 1.2
—Ei - (ayiﬂ-c ( )

The following condition of regularity
Im{/e=0 for z? 4 y*— o (1.3)

and initial conditions should also be satisfied

¢(0,2,y) =0, £(0,2) = —|z|ctgB (1.4)

Fig. 1.

2. The wedge penetration problem will be a special case of this problem
when the angle 8 = 7/2. The Wagner-Sedov constant penetration velocity
problem can be obtained from the present one by putting the index y = 0.
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The problem of symmetrical stream impact is also a particular case if we
assume that streams I and IT (Fig. 3) are geometrically similar and are
symmetrically located with respect to the x and y axes. At the instant of
starting, too, they should share point 0, whilst at infinity the velo-
cities of the fluid particles are equal in magnitude, opposite in sign,
and vary according to a power law.

Because of symmetry the x axis will be a streamline. If we introduce
a system of coordinates associated with a plane and put a = 0, the above
problem becomes that of lateral flow of fluid against a plane (Fig. 4).

Note. It is obvious that the problem of lateral flow of a fluid wedge
under gravity, from an initial state of rest, can be reduced to the above
problem, In that case we should put a = 0 and y = 1,

3. Problem (1.1) to (1.4) is a similarity or "automodel" one. Because
of this, the solution will depend on two dimensionless groups of the
variables x, y and t.

Owing to symmetry about the y axis it is sufficient to study the flow
on the right hand side of the y axis.

Introduce the dimensionless variables ¢ and n by means of the following
transformations

E= i SN a — — 5 0@ — cos (1.5)
7:—{—~cosa+ Y_sina + sina
| C‘Y+1 ClY+1

The velocity potential ¢(x, y, t) and the equation of the free bound-
ary £(x, t) can be represented thus

o =cutrt® (g, 1), y=~C(z,t)=ctrt1{/(E)sina—tcosa—1} (1.6)

where ® and f are the required non-dimensional functions,

Our chosen system of coordinates £, n is convenient because the ex-
pression for the free boundary n = f(£) is a single-valued function of
the one variable £.

To the region 7 in variables &, 7, whose shape varies in time, there
corresponds a completely determinate invariable region 7 (Fig. 5).

The function ®(£, n) in the 7 region will be a harmonic in variables
¢ and 7. em | 0
1A on?
The equation of the sides of the wedge in this coordinate system will
be £ = 0. Let us find the boundary conditions for function ®.
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Fig. 5.

To do this, we first of all work out the differentials of the function
olx, y, t);

9 . ®

= (2 DO —(r+ D E+cosn)IZ — (y+ Din—sina) )
g:_i = ctY(gg)smoc + (Dcosoc)

3§= ct*(—g—g)cosa—i—g—:)sina)

Let n° denote the vector of the nomal external to the wedge surface.
We then have

g—: acl’cos(n z) + -—cos(n y)—-ctY{(a—g)smd-F (DCOS“)Sin“’*‘

-l—( qu cosa + — sm oc) (—-cos ou)} = ct“fg%>

Now put this expression into the first of the conditions (1.1) and we
find that along B’AB the function ® satisfies the condition

(_95_)

o8

The assymptotic relation (1.3) will apparently remain valid, i.e.

=cosa 1.7

limVV®=0  for & +n-co0 (1.8)

Moreover the constant pressure condition (the second in (1.1)) takes
the following form;

@+ 1O —(y + 1) (€ + cosa) T — (y + 1) (1 —sina) 3 +

L[ + ()]s ws
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We now transform the kinematic condition
% _ (o
dt oY/ y=3

In dimensionless variables it will be:

(6t + ggfﬁ) =f(E) { IY( ot cos & + E,sm \) =/(%) (1.10)

Now we do some auxiliary calculation
= (7 -+ 1)ctY{f(E)sine —Ecosa — 1}
= 7t {f (§)sina — cos a}

24
B3

& _ 0 otde | 0Edy 3% | 0109  0%dy
dt gt T oz dt  oydi a9t gzdz | ayoy

a_gz__( 1) oina+ (v +1) Y+2cosa=——-(~(+1)—:—(E+COS¢)

sina 9t __cosa
CtY+1 ay ct'Y+1

sina

da —(r +1)—(E+cos a) + —— jyeesile (65 sma-{-a—?cosa)

cos { o0 1 4D
__CtY_HctY\ 3% cosac+——smoc)_ ~—(T+1)—(:+cosa)+ ToE

Both here, and in the expressions to follow, a dash denotes a deriva-
tive with respect to £&. Insert these expressions into condition (1.10)
and, after some rearrangement, we bring it to the following form

(Y + 1) {f —sina — /'t — f'cos &) +‘;L;’f'=gi:3

Now introduce the expressions for velocity
o0 oD
‘a—E' =u, 07) =P
and, finally, the kinematic condition along the free boundary can be
written thus

v=(f—sina)(y + 1) — f{(y + 1) (§ + cosa) —u} (1.11,

4, One important thing should be mentioned here for future reference,
namely, if the equation of the free surface is known, i.e. if function
f(£) is known (for instance from experiment), the velocity distribution
u, v along the free surface reduces to solving an ordinary nonlinear
differential equation. To obtain this equation we must eliminate v from
equations (1.9) and (1.11).
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In equation (1.11) all the functions depend on £. On differentiating
it we obtain

o = fu — " {(x + 1) &+ cos o) —u) (1.12)
Moreover, bearing in mind that along the free boundary
d® ,
aE ¥ + /v

we take the total derivative of the dynamic relation (1.9);

u v \

v el () o (g cosa— ) o (—sina— 5} <0

Replacing v’ by its expression (1.12), we obtain
" (e fu’ L W —
qu o — (1) [ (£t eosa— )+ [fu

— I+ 1) € + cosa — )y (f —sina— ;%T)}:O

v can be eliminated from this equation by means of (1.11). After some
obvious rearrangement we arrive at

[(y+1) €+ cosa)—ulfu' (1 + /) — /1" {(y + 1) (§ + cosa) —u} +
+4/l=qu+1(x+ 1)/ —sina) (1.13)

Equation (1.13) is an ordinary first-order nonlinear differential
equation. We must solve this, putting £ = =. The solution should also
satisfy the condition (1.7), i.e. u(0) = cos a. We thus arrive at the
boundary problem for a first-order equation. In general the problem can-
not be solved. We will see below that a further condition can be used to
get a reasonable shape for the free surface.

Equation (1.13) can be simplified if y = 0 (velocity of wedge or of
the stream constant)

E+cosa—u)[u (1 4+ /%) — /1 (E+ cosa—u)] =0 (1.14)

At the surface of the wedge (£ = 0) the normal wedge velocity component
is u = cos a. From physical considerations, it is evident, too, that
u < cos a for any value of £ > 0, Therefore the multiplier for no values
¢ # 0. Furthermore, from equation (1.14) we have
E+4 cosa—us£0
r__ [/ (4 cosa—u -
- 51+r* ) (1.15)
If f(£) is already given this becomes an ordinary linear differential
equation in u. Thus if y = 0 it can be solved by quadrature. Moreover, if

u
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we insert the solution so found into kinematic condition, (1.11) we deter-
mine the velocity v without further quadratures. The case y = 0, it
should be mentioned, does not exhaust all the values of parameter y for
which equation (1.13) can be solved in quadratures.

To explain this circumstance more fully, let us put equation (1.13)

into a slightly altered form. Solving for u’, we get (1.16)
w = PP+ DEFcosa)—u]  vf? yu+ (y+ 1)t (f—sina)f’
1+ P Ay + 1) (E+cosa) —u]

Now introduce the new variable y = (y + 1)(£ + cos a) - u.,Then equa-
tion (1.16) becomes:
' 5

V=—13my+@r+1)—

< |ty

(1.17)

wvhere
B=~((y+1)[/’(f—sina)+§+cosa]
T+ 77

If y = 0, then B= 0, and we then have

This equation corresponds to (1.15). Equation (1.17) reduces to a
linear one in the further two cases:

1. When y = - 1. We have B = 0 and therefore

rgn

y=— 1f—+72y —1
2, When y = ~ 1/2. By making the change of variable y? = z we arrive

at a first-order linear equation

, e B

fTTIaEmt T

2. Determination of Resultant Fluid Pressure. We will work
out the drag of the wedge. Denote the momentum within volume r by K, then:

dK y
S +F=0 (2.1)

where F is the vector resultant force of the fluid on the wedge. Because
of symmetry its projection on the x axis will be zero. For the other pro-
jection we have

F,= ——u (2.2)
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Work out Ky

Ky=pgvyd‘:=pgégdt (2.3)

L]
Bl

Introducing nondimensional variables

- _
E—Cl'f+1’ n—cpr-i—l
we get
— pedgSvE2 K [k = 9% gtds 4
K, = pcdtsv+2K K Saﬁdsdn) (2.4)

T

Region 7 in the variables £ and 7 is fixed, and therefore the drag
force will be

Fy= — &= —p (37 + 2) K" (2.5)
Now transform the integral within expression (2.5) by Green's Theorem

. z {80
K =gvm-v1qudn=g»qa-;ds
T 5
Here S is the surface enclosing the volume 7. First of all let us
assume that it consists of free surfaces S, and S,, the sides of the wedge

0, and 0, and an arc of sufficiently large radius R (Fig. 6). The normal
here is taken external with respect to the fluid.

. - 5@ - ~ 5@
K = S 7248 + S 'f‘%%dS+S'q37dS
5118, a0,

SR
From symmetry, this expression can be put;

K*—=2J, 42/, + Js

where

-~ 60D oD - o0
Jl.—_gv‘a—ndS, ./2=S-q67d3, 13=S'r‘7dS (2.6)

17}
51 L2 SR
Now let us deal with the integral
Jy = g D1 dS = — g @ cos 0dS
Sp SR

Here m is the nommal external to the fluid, S is external to the wedge,
7° is unit vector along axis 7. EvidentlyV 7 = °.

Now let us examine the Laurent expansion of the complex potential W =
®+ iV in the neighbourhood of point { = £ + in = . As the fluid at

infinity is at rest, (dW/dz)_= 0, so that the expansion W(z) will not
contain positive powers of z. Thus
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Fig. 6.

We can put a; = 0 without losing generality. (At the starting instant
the fluid is at rest; ¢ = 0 for t = 0; as at infinity the fluid is at
rest, for any value of t we have (¢)_= 0, hence (W) = 0). Coefficient
a, is zero likewise because owing to symetry there is no flow through
the 7 axis, and therefore the circulation is zero. Thus the potential
® = Re W can be represented by the following formula;

, 0
®(r,0) = X(:z"'_)
where function x(r, 6) is limited for any values of 6 for r + «. There-
fore in equation (2.6)

limJ, =0 for r->

For the integral J, in (2.6) we have

2/, = —-—2S 7, cosa dS = 2'\. 7-dS

Denote the volume of wedge immersed in the fluid by r,:
f e | de = | divgds = 2{ n-ds+ \ 7-ds
.t, 'Tl oy BB’
Along BB’ % = h = const. Thus, if L is taken as the length of BB",
then
2 (q-dS=n—iL
However, as OA =1, from Fig. 6, we find
L=2(h-+1)ctga

And thus
Jy == — 2k (h + 1) ctga = (1 — h?)ctga
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because
7 =(h+1)ctga
We will write the integral in the coordinate system £, n (Fig. 5).
Making use of the fact that
o0 1 ’
on = Vigm T

dS = Y1+ Fede

vhere n = f(£) is the shape of the free fluid surface in this system of
coordinates, u and v, normal and tangential velocities respectively of

the fluid with respect to the wedge, it is possible to express it in this
form

m=f(E)sina—Etcosa —1,

7 %as =g (7 (§)sina — Ecosa — 1) [ — /' (§) u] dt

"3
=

And finally we obtain the following formula for K*;

Kt = (1 —h)ctga + 2& [/ (B)sinz —Ecosa —1|[v— /' §)ul dt (2.7)

where
h=fQ)sinae —1

Therefore if the free surface is known, the problem of finding the
drag force reduces to the solution of an ordinary differential equation
and to quadratures,

3. Three-Dimensional Problems. 1. We will now deal with two three-
dimensional problems; namely, that of axially symmetric penetration of an
infinite cone into an ideal incompressible fluid, and the problem of the
axially symmetric cumulative.jet. To find the velocity potential ¢(x,y,t)
we will solve the following boundary problem (notation the same as in
Fig. 2. except that x is now a radius, the distance from the axis of
symmetry y);

e 1 d ap\
o + <% (x 5;) =0  in the region of =
34: =V cosa for B'AB (3.1)

P [ (] -0 o

As before, we here take the normal positive inward with respect to the

fluid, S is the free surface y = {(x, t) which is determined from the
kinematic condition
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a __ (d9
dt (@)ycc (3.2
Additionally, the condition of regularity must be fulfilled

lim V(P =0 for yz 4 22— oo (3.3)

and the initial condition
¢(x,y,0) =0, C(x,0) =zctgp (3.4)

In view of symmetry about axis Oy it is sufficient to deal only with
the flow in any semi-plane meridian section.

Introduce dimensionless coordinates ¢ and n (Fig. 5), connected with
x, y and t by relations (1.5) and the velocity potential ¢(x, y, t), and
the equation of the free surface y = {(x, t) will be put in form (1.6).
The boundary conditions on the cone generator, at infinity and on the free
surface of the fluid in £, 7 coordinates, do not change their form as
compared with the plane case and can be described by formulas (1.7), (1.8),
(1.9) and (1.11) respectively, but the equation for potential ®(£, n) will
be different. After some rearrangement it can be put into this fomm

0 20 1 o
T (3

. o0
= + TRy sina - 7n ©0S oc) =90 (3.9)

ok?
The analysis carried out for the relation for the free surface (see 4,
para. 1) is also valid for the case of axial symmetry.

2. We now work out the drag as the cone penetrates the fluid. From the
theorem of momentum it follows that the force F ¥ acting on the cone
vertically, 1is;

F,=dK,/|dt (3.6)

vhere K is the momentum component along the y axis of the matter enclosed
in volume r. Owing to symmetry, the other momentum components within the
fluid are zero.

To work out Ky

. o
K,=p vudT:pS‘%dt (3.7)

R ]

we use nondimensional variables

x ;) _ _Y = 2 (3.8)

.ctY+1 ’ ey tY’ crYt!

arl

Then we have
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9 _opr® ge— PEBYD R apeings (3.9)
ay on D, n,8)
K, = pcttir3K*, K* = S{;’%ﬁ d= (3.10)

k4

Because the region r in the variables g, ;), ¢ is fixed, it follows
that K* is independent of time. Thus, for the drag force we have the ex-
pression

F, = —p(4y + 3)ctrert2K® (3.11)
Rearrange the integral in expression (3.10);

K =.—_~S v@-@v_;d{d{dﬁ'=g 722 ds

T ]
where S is the surface enclosing the volume 7. Surface S can be considered
as consisting of the wetted surface of the cone o, free surface S and the
surface of a sphere of sufficiently large radius Sp. Then for K* we have
the expression

e (= 80 (- — 60
[ L] Sp
After calculation similar to that carried out for the plane problem,
we finally arrive at the following formula for K*

K* = wetg? a(l + h)* (1 —2h) + (3.13)

+2n { 1/ () sine —Ecosa— 1] [f (§) cosau + Esinal v — /' (§) u] dt
0
where n = f(£) is the shape of the free surface of the fluid in &, 5 co-
ordinates; u, v are respectively velocities normal and tangential to the
cone generator, h = f(0) sin a — 1. Now, using (3.11), we are able to
determine the force acting on the penetrating cone if the form of the
free surface of the fluid n = f(£) is known.

4. Method of Numerical Calculation. To work out the approximate
value of the force acting on the body, and the velocity distribution
along the free boundary, it is sufficient to find the shape of the latter
approximately. This can be done by the laws of conservation. In particular,
if we use only the law of conservation of mass, the free surface can be
approximated by the following expression

=7 () =at+ b+ de—t (¢>0) (4.1)

As the fluid is at rest at infinity, the free boundary in (£, 5) co-
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ordinates has the asymptote

sin B
cos (fp — a)

n=tgB—a)§+

where a 1s the angle between the side of the wedge (cone generator) and
the Ox axis, and 8 is the half angle of the liquid wedge (cone) (Fig. 5).

Therefore the coefficients a and b will be
a=tg—a), b= “‘03'5%5“_3—0‘)“

(4.2)

It follows from the condition of incompressibility of the fluid, more-
over, that the immersed volume of the cone equals that of the fluid dis-

placed. This condition gives one of the equations for finding coefficients
¢ and d;

in the plane case

d 1 sinBcosa

e~ 2 Tcos(B—a) (4.3)

and for three dimensions

d3+4(—1—+cos a)—-—————-——-———-«———smB d—-2 o SinBrosa (4.4)

cOs d co8 (B—at) 3 T cost(B—a)

The second equation, which connects these coefficients, can be obtained

thus. To express the velocity u on the free fluid surface we have the
ordinary first-order differential equation (1.15);

u = 11 (El++0;>§za u) (4.5)
The function u must here satisfy two conditions; that at infinity

u() = 0 and that on the side of the wedge (cone generator) u(0) = cos a.

We will use the first condition to find the arbitrary constant in solving

equation (4.5). The condition on the side of the wedge (cone generator)

will give the second tie-up between ¢ and d, which, both in the plane

and in the three-dimensional cases, reduces to one and the same transcen-

dental equation in the following fomm

Vis Y — Yo
V1 + Yoi—Ym

1 — e 1
(cosa—l- —c)(Vi - y02~V1 + Yoo ) -———c—[ym]n

14y, y+V1+y Vit yd

+V1+yatIn 20+ ¥ ]—Vﬁl»{-yozcosa:() (4.6)
where
Yo= J'(0)=tg(f —a) —cd, Yo = ['(x) = tg (f —a)

In this manner the free boundary of the fluid is determined, and both
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kinematic and dynamic conditions are accurately fulfilled on it.

Now we can make use of the formulas deduced in the foregoing para-
graphs, It is now possible to find approximately the value of the nomal
velocity at the free surface and also the total force acting on the
immersed wedge (cone).

5.Some Results of Calcidations. The high speed computer "Strela"
was used for working out calculations in accordance with the above method.

These results are compared with known experimental results and some
calculated results in the graphs shown below.

For wedges of angle a varying from 10° to 80° in steps of 10° the shape
of the free surface (splash stream) was calculated (see Fig. 7). A general
similarity can be seen in the relations between the distances from the
cone vertex to the apices of the splash streams; with a » #/2 this dis-
tance tends to zero, and, conversely, with a » 0 it tends to infinity.
Velocity profiles have been drawn along the free surface. It can be seen
that the velocity at the tip of the splash stream increases rapidly with
dicreasing wedge angle and tends to infinity when the wedge turns into a
plate (Fig. 8).

Figure 9 gives calculated values of resultant thrust of the fluid on
the wedge as a function of wedge angle a. Our results agree with experi-
ment and with those worked out by other authors.over a wide range of wedge

a=80° 70° 6p° s0° 40° 30°

N =

Fig. 7.

angles. They can be recommended for practical application for angles a
between 20° and 90°. Curve 1 gives the reaction of the fluid on the wedge,
curve 3 the resultant thrust on a cone, and curve 2 represents a develop-
ment from the plate analogy. (1) is the load integral obtained in [41],
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“ 1723
75
i
]
Hauk x-2
o~y —
S #
onyc
L | 1 | 4\\ a
J 70 60 o 80°
Fig. 8. Fig. 9.

(2) is derived from a more accurate analysis [4], and (3) comes from
Wagner’s analysis for a = 18°,

The theory is open to improvement for small wedge angles. It may be
assumed that the plate analogy might give a satisfactory result here.

The method of solving the penetration problem can be applied without
any alteration to the problem of the lateral flow of a fluid wedge against
a solid wall, with the condition that fluid particles at infinity go at
constant velocity, and, at the initial instant, the fluid wedge touches
the wall. Free surface shapes have been calculated, velocity profiles and
the pressure of the wedge on the surface have been evaluated, all as a
function of the half-angle of the wedge. (Fig. 10 shows the relation bet-
ween the fluid thrust and the half-angle of a wedge).

Lavrentiev [ 6 ] proposed an explanation of the cumulative effect of an
explosion with a conical envelope. According to Lavrentiev’s model the
movement of the envlope is similar to that of an impacting stream.
Lavrentiev reviewed plane and axially symmetrical models, but the motion
was considered to be stationary. Despite such an apparently rough method
of approach, Lavrentiev’s model has at least succeeded in giving some
qualitative explanation of phenomena which seemed very complicated
hitherto.

The approach to the solution of the stream impact problem in this work
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opens the way to a study of the more complicated mathematical model of
the cumulative explosion, the model of transient accumulation of plane
and conical charges.

0

Fig.

1
17/
10,

Suppose, at the initial instant, the fluid occupies a volume limited
below by a solid conical surface with vertex angle of 28 (Fig. 11), and
a free boundary which also represents a cone, but with vertex angle
2(8 -~ B). It is assumed that at the initial instant we have velocities V_
directed along the cone generator. It is easy to see that the problem put
in this form reduces to the one discussed above. The forms of the free
surfaces of cumulative streams have been worked out and the velocities
along them have been calculated as functions of angles 8 and 8.

The table shows values of dimensionless velocities at the apices of
cumulative streams for various stream "thicknesses" (angle ) and various
envelope angles (5). The table reveals that the apex velocity, which can

TABLE
3 | B=1p° 20° 00 | e b0° TRV ST X
90° 1.4627 | 1.9294 2.5032 | 3.2647 | 4.3550 | 6.1050 | 9.5046 | 19.4636
80° | 1.7320 | 2.3161 | 3.0718 § 4.1487 | 5.8743 | 9.2197 | 19.0266
70° | 2.0197 | 2.7653 | 3.8032 | 5.43'8 | 8.6496 | 18.0092
60° 2.3337 [ 3.3213 4.8577 | 7.8102 | 16.4418
50° | 2.6955 | 4.0932 | 6.7238 | 14.3708
40° 3.1604 | 5.4158 | 11.8570
30° | 3.9006 | 8.9708
20° [ 5.7776
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exceed ¥V, by factors of ten, increases rapidly both with increased stream
thickness and decreased envelope angle. The whole effect is a transient
one, and therefore stationary models will not give such estimates.

It has been shown in 3 above that the solution of three-dimensional
(axially symmetric) problems on cone penetration, on lateral flow of a
fluid cone and impact of conical streams can be derived by direct analogy
with plane problems. Free surface shapes and velocities along them have
been calculated in terms of cone angles.

It is evident from this that the general pattern of velocity variation
is similar to that of a wedge, but the changes take place over a region
which lies closer to the surface of the body.

Figure 8 shows how the velocity at the nose of a splash stream varies.
In the case of the cone the velocity increases less rapidly with reduced
apex angle than in the case of the wedge. Figure 9 shows the relation
between the reaction of the fluid on the cone for various cone angles a.
On comparing these with the results for the wedge we see that for large
values of a the curve for the cone lies below that of the wedge, but for
values of a within the range 30° to 40° the cone displays a sudden in-
crease in reaction, and the curve becomes much steeper than that of the
wedge.

Figure 10 shows how the pressure of an outflowing fluid cone reacts on
a conical surface for various angles of divergence of the latter, B. The
pressure increases with increase in angle 8 more rapidly than in the case
of plane flow.
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